Coupled capillary and gravity-driven instability in a liquid film overlying a porous layer.
نویسندگان
چکیده
In this work, we study the problem of onset of thermal convection in a fluid layer overlying a porous layer, the whole system being heated from below. We use Brinkman's model to describe the porous medium and determine the corresponding linear stability equations. The eigenvalue problem is solved by means of a modified Galerkin method. The behavior of the critical wave number and temperature gradient is discussed in terms of the various parameters of the system. We also emphasize the influence of the boundary conditions at the upper surface of the fluid layer; in particular, we examine the role of a free surface whose surface tension is temperature dependent (Marangoni effect). Comparison with earlier works is also made.
منابع مشابه
The Density-Driven Nanofluid Convection in an Anisotropic Porous Medium Layer with Rotation and Variable Gravity Field: A Numerical Investigation
In this study, a numerical examination of the significance of rotation and changeable gravitational field on the start of nanofluid convective movement in an anisotropic porous medium layer is shown. A model that accounts for the impact of Brownian diffusion and thermophoresis is used for nanofluid, while Darcy’s law is taken for the porous medium. The porous layer is subjected to uniform rotat...
متن کاملSTABILITY ANALYSIS FROM FOURTH ORDER NONLINEAR EVOLUTION EQUATIONS FOR TWO CAPILLARY GRAVITY WAVE PACKETS IN THE PRESENCE OF WIND OWING OVER WATER.
Asymptotically exact and nonlocal fourth order nonlinear evolution equations are derived for two coupled fourth order nonlinear evolution equations have been derived in deep water for two capillary-gravity wave packets propagating in the same direction in the presence of wind flowing over water.We have used a general method, based on Zakharov integral equation.On the basis of these evolution eq...
متن کاملCharacterization of Liquid Bridge in Gas/Oil Gravity Drainage in Fractured Reservoirs
Gravity drainage is the main mechanism which controls the oil recovery from fractured reservoirs in both gas-cap drive and gas injection processes. The liquid bridge formed between two adjacent matrix blocks is responsible for capillary continuity phenomenon. The accurate determination of gas-liquid interface profile of liquid bridge is crucial to predict fracture capillary pressure precisely. ...
متن کاملEFFECT OF COUNTERPROPAGATING CAPILLARY GRAVITY WAVE PACKETS ON THIRD ORDER NONLINEAR EVOLUTION EQUATIONS IN THE PRESENCE OF WIND FLOWING OVER WATER
Asymptotically exact and nonlocal third order nonlinear evolution equations are derivedfor two counterpropagating surface capillary gravity wave packets in deep water in thepresence of wind flowing over water.From these evolution equations stability analysis ismade for a uniform standing surface capillary gravity wave trains for longitudinal perturbation. Instability condition is obtained and g...
متن کاملHysteresis models and gravity fingering in porous media
We study flow problems in unsaturated porous media. Our main interest is the gravity driven penetration of a dry material, a situation in which fingering effects can be observed experimentally and numerically. The flow is described by either a Richards or a two-phase model. The important modelling aspect regards the capillary pressure relation which can include static hysteresis and dynamic cor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 64 6 Pt 2 شماره
صفحات -
تاریخ انتشار 2001